
Dynamic Time-Variant Connection Management for
PGAS Models on InfiniBand

Abhinav Vishnu,⇤ Manoj Krishnan,⇤ and Pavan Balaji‡

⇤ Pacific Northwest National Laboratory, Richland, WA 99352
Email: {abhinav.vishnu, manoj}@pnl.gov

‡ Mathematics and Computer Science Division
Argonne National Laboratory, Argonne, IL 60439

Email: {balaji}@mcs.anl.gov

Abstract—InfiniBand (IB) has established itself as a promising

network infrastructure for high-end cluster computing systems

as evidenced by its usage in the Top500 supercomputers today.

While the IB standard describes multiple communication models

(including reliable-connection (RC), and unreliable datagram

(UD)), most of its promising features such as remote direct

memory access (RDMA), hardware atomics and network fault

tolerance are only available for the RC model which requires

connections between communicating process pairs. In the past,

several researchers have proposed on-demand connection man-

agement techniques that establish connections when there is a

need to communicate with another process. While such tech-

niques work well for algorithms and applications that only

communicate with a small set of processes in their life-time, there

exists a broad set of applications that do not follow this trend.

For example, applications that perform dynamic load balancing

and adaptive work stealing have a small set of communicating

neighbors at any given time, but over time the total number of

neighbors can be very high; in some cases, equal to the entire

system size.

In this paper, we present a dynamic time-variant connection

management approach that establishes connections on-demand

like previous approaches, but further intelligently tears down

some of the unused connections as well. While connection tear-

down itself is relevant for any programming model, different

models have different complexities. In this paper, we study

the Global Arrays (GA) PGAS model for two reasons: (1) the

simple one-sided communication primitives provided by GA and

other PGAS models ensure that connection requests are always

initiated by the origin process without explicit synchronization

with the target process—this makes connection tear-down simpler

to handle; and (2) GA supports applications in several domains

such as computational chemistry (NWChem) and computational

biology (ScalaBLAST) that demonstrate this behavior making

it an obvious first target for the proposed enhancements. We

evaluate our proposed approach using NWChem computational

chemistry application using up to 6144 processes, and show that

our approach can significantly reduce the memory requirements

of the communication library while maintaining its performance.

I. INTRODUCTION

Amongst many network interconnects that integrate into
cluster computing systems today, InfiniBand (IB) [1] has
established itself as a promising interconnection technology.
As reflected in the TOP500 [2] rankings, IB has been ob-

serving wide acceptance due to its high performance and
open standard, with 28% of the systems using IB as their
interconnect. Even though the IB standard describes multiple
communication models (including reliable-connection (RC),
and unreliable datagram (UD)), most of its promising fea-
tures (RDMA, hardware atomics, network fault tolerance) are
only available for the RC model which requires connections
between communicating process pairs. This is a scalability
concern as each connection can consume up to 44KBytes [3]
of memory, resulting in hundreds of megabytes of connection
memory footprint on large scale systems.

To address this problem, on-demand connection manage-
ment mechanisms have been proposed with the message
passing interface (MPI) model [4], [3], [5], [6], [7] as well
as partitioned global address space (PGAS) models such
as Global Arrays (GA) [8], [9]. The proposed techniques
improve the memory footprint of a communication library
by establishing connections only when there is a need to
communicate, and not before. While such techniques work
well for algorithms and applications that only communicate
with a small set of processes in their life-time, there exists a
broad set of applications that do not follow this trend. For ex-
ample, applications that perform dynamic load balancing and
adaptive work stealing [10] have a small set of communicating
neighbors at any given time, but over time the total number of
neighbors can be very high; in some cases, equal to the entire
system size.

In this paper, we present a dynamic time-variant connection
management approach that establishes connections on-demand
like previous approaches, but further intelligently tears down
some of the unused connections as well. While connection
tear-down itself is relevant for any programming model,
different models have different complexities. For example,
programming models such as MPI provide a number of
communication features including both two-sided and one-
sided communication. In such models, since either of the two
end processes in the connection can initiate communication,
a process cannot tear-down a connection without coordinating
with the remotely connected process; this can be cumbersome

jbullock

jbullock

jbullock

jbullock

and expensive. On the other hand, PGAS models such as
Global Arrays (GA) [8] provide a simpler communication
model where a single process initiates communication in a
one-sided manner (either a get/read or a put/write). Each node
uses a separate thread known as the data server that contributes
a part of the memory on the node to the “global address
space”. Processes can only get data from or put data into this
global address space exposed by the data server (either over the
network or through shared memory); direct process-to-process
communication is not provided by this model. This restricted
model ensures that connection requests are always initiated
by the origin process without explicit synchronization with
the target process—this makes connection tear-down simpler
to handle.

Therefore, in this paper, we study the Global Arrays (GA)
PGAS model for two reasons: (1) the simplicity of the
model makes dynamic connection tear-down more natural
to achieve; and (2) GA supports several applications that
demonstrate this behavior making it an obvious first target
for the proposed enhancements. We evaluate our proposed
approach with NWChem [11] computational chemistry ap-
plication using up to 6144 processes, and show that our
approach can significantly reduce the memory requirements of
the communication library while maintaining its performance.
We refer to our approach as Advanced Connection Tear-down
Schemes (ACTS) on InfiniBand.

The rest of the paper is organized as follows. In section II,
we present the related work. In section III, we present the
background of our work. In section IV, we present the design
of ACTS, discussing the challenges presented by the PGAS
models. In section V, we present the performance evaluation
of ACTS using NWChem [11], comparing it to the state of
the art implementation, ARMCI-ODCM [9]. We conclude and
present our future directions in section VI. We begin with the
description of the background work.

II. RELATED WORK

Multiple approaches have been proposed for on-demand
connection management with InfiniBand for MPI [12], [4], [3],
[5], [6], [7]. Recently, mechanisms for on-demand connection
management have been presented with PGAS models using
Global Arrays [9].

Koop et al., proposed designs using multiple transport
semantics with InfiniBand [1]. Using unreliable datagram
connection-less transport semantics with InfiniBand, Koop et
al., has proposed designs for copy based approaches [3].
Copy based approaches are applicable for MPI, since it has
implicit synchronization. Using zero-copy based approaches
with InfiniBand, Koop et al. also proposed using zero copy
based mechanism provided by InfiniBand, since the unreliable
datagram transport semantics do not support RDMA [5]. Koop
et al. have also presented multi-transport InfiniBand semantics
using unreliable datagram and reliable connection transport
semantics [6]. Recently, work related to extended reliable
connection semantics has also been proposed. Using this
transport, multiple processes on the same node can share the

data transfer queue, allowing memory requirements to increase
corresponding to the number of nodes, rather than the number
of processes [7]. Recently, we have also proposed methods for
on-demand connection for Global Arrays [9]. However, none
of the previously proposed approaches handle adaptive tear-
down of connections, which we propose and evaluate in this
paper using ACTS.

III. BACKGROUND

A. InfiniBand Transport Semantics
In this section, we present a brief introduction to the

InfiniBand transport semantics. We specifically focus on the
reliable connection transport semantics. Reliable connection
is the most popular transport semantics for designing runtime
communication system over InfiniBand [3]. A variety of
features including RDMA, Automatic Path Migration [13] and
hardware atomics are available with this semantics, which are
not available with Unreliable Datagram(UD) - the other pop-
ular transport semantics provided by InfiniBand. RC provides
exactly one, in-order data delivery to the destination and exact-
once notification of the data delivery to the initiator, making it
an attractive choice to design communication runtime systems
for MPI and PGAS models. Figure 1 shows the communication

RESET

ERROR INIT

QP Creation

Modify QP

Modify QP

Ready−to−send
(RTS)

Recv from Dest. QPReady−to−ReceiveModify QP

Modify QP

Send Data to Dest. QP

Recv from Dest. QP (RTR)

Error in Transmission

Send Queue Drained

(SQD)

Fig. 1. QP Communication State Diagram

states and their transitions of an InfiniBand queue pair (QP) -
communication channel of RC transport. A QP is created in
a RESET state and assigned a unique number called qpnum.
There are multiple state transitions which allow the QP to
receive data (Ready-to-Receive (RTR)) and send data (Ready-
to-Send (RTS)) from destination QP. Other state transitions
(not used in ACTS design) are not explained due to lack of
space.

B. Aggregate Remote Memory Copy Interface (ARMCI)
ARMCI is a communication runtime system which pro-

vides a general-purpose, efficient, and widely portable remote
memory access (RMA) operations (one-sided communication)
optimized for contiguous and non-contiguous (strided, scat-
ter/gather, I/O vector) data transfers. ARMCI also provides
a set of atomic and mutual exclusion operations. ARMCI
leverages the low level network primitives provided by modern

networks and multi-core systems. It is supported on clusters
(InfiniBand, Ethernet) and high-end systems (IBM BGs, Cray
XTs, Cray XE6).

C. Connection Structure with ARMCI over InfiniBand

In ARMCI, a process with lowest rank in a node is called
master and other processes on the node are called clients. The
master process creates a thread - data server, which performs
one-sided operations on behalf of clients on other nodes such
as (put, get, lock, accumulate), which may not be efficiently
implemented using memory semantics like RDMA. Master
process on a node is treated as a client by data server(s) of
another node(s).

ClientData Server Master Process

Fig. 2. Connection Establishment Pattern in ARMCI

A client establishes connection(s) to data server(s) on an-
other node; there are no client-client connections. Each chunk
of a Global Array is allocated by the master process, created
as a shared memory segment, and registered with the network
(if necessary). This allows each client on a node to read and
write to the chunk directly. It also allows clients on other
nodes to read/write directly from/to the chunk. Hence, it is
necessary only to establish connections with the data server
on a node, which has access to the chunk, since it is a thread
of the master process. Figure 2 shows a typical connection
management scenario with ARMCI.

IV. OVERALL DESIGN

In this section, we present the overall design of ACTS. We
begin with a description of the existing connection manage-
ment approach with ARMCI over IB. Without loss of gener-
ality, we have used terms QP and connection interchangeably
for the rest of the section.

A. Existing Connection Management with ARMCI over IB

The ARMCI-ODCM [9] uses the following connection
management protocol, with an assumption that connection to
the corresponding data server does not exist:

• Initiate a Connection req message to the data server,
Create connection and transition the QP to INIT state

• Send the Connection info to the data server and wait for
data server’s Connection info

• Transition the connection from INIT-RTR and RTR-RTS
states. Continue with the Data transfer.

Data Transfer

RESET−INIT

Create QP

RESET−INIT

Create QP

INIT−RTR
RTR−RTS

INIT−RTR

RTR−RTS

T
im

e

Connection req

Connection info

Connection info

Client Master Process Data Server

Connection Req

Fig. 3. ARMCI-ODCM:Connection Establishment Protocol [9]

Figure 3 shows the connection establishment protocol. The
multiple phases of connection establishment are overlapped,
by incurring an addition cost of Connection req message. As
presented in our previous work, the overlap protocol reduces
the overall connection establishment time significantly [9].
The overlap protocol has potential for high impact for ACTS,
since it reduces the overall time for connection establishment
significantly.

B. ACTS Design

In this section, we present multiple aspects of ACTS - ap-
proaches to select a victim connection and tear-down protocols
for one-sided communication. We also discuss cross-cutting
issues not addressed by ACTS.

1) Selecting Victim Connection: The micro-architecture lit-
erature has proposed a wide variety of approaches for selecting
a victim cache line/page [14]. The primary objective is to
provide best temporal and spatial locality for cache lines, while
keeping the cost of searching for victim cache line minimal.

Considering the list of active connections as a cache, the
objective for ACTS is to provide best temporal locality for
a connection, while minimizing the cost of searching for
a victim connection. We leverage the Least Recently Used
(LRU) [14] connection tear-down method for selecting the
victim connection. LRU tear-down method provides equal
priority to the connections ordered in terms of access patterns
- useful for the class of applications exhibiting quite irregular
structure. Applications using dynamic load balancing and work
stealing [11], and design of application kernels using task
pools [10] exhibit this pattern.

However, these applications and benchmarks may exhibit
a regularity in communicating to a small subset of pro-
cesses The usage of collective communication primitives (scat-
ter/broadcast/reduce for data partitioning/result collection),
requesting an information typically held by a single/small
collection of processes (like counters/locks), work stealing

algorithm(s) which use topology information to prefer topo-
logically closer partners, adds to this regularity. To handle this,
we use a multi-queue LRU method, where queues are ordered
by number of times a connection has been teared down. A
victim connection is chosen from the tail of the queue with
the least number of teared down connections. This approach
is referred to as LRU-M for rest of the paper.

2) Low Overhead Tear-down Protocols with Overlap:
PGAS models such as GA [8] provide a simple one-sided
communication model, where a single process/thread initiates
data transfer - making decision for connection creation/tear-
down completely one-sided. Efficient tear-down protocol for
two-sided message passing with MPI would require implicit
synchronization. The one-sided tear-down protocol is ex-
plained here:

• If the connection exists, proceed with the data transfer
• If the connection does not exist and the overall number of

connections are less than connection threshold max conn,
proceed with ARMCI-ODCM [9], else

• proceed with the following protocol:
– select a victim connection (using LRU or LRU-M)
– ensure all the pending data transfers have been

initiated
– Initiate a flush message, to ensure the completion of

outstanding data transfer operations
– Initiate a tear-down message, wait for the acknowl-

edgment and proceed with ARMCI-ODCM [9]

Flush

T
im

e

Client Master Process Data Server

Victim Selection (LRU/LRU−M)

Waitproc

tear−down

tear−down

tear−down request

Fig. 4. ACTS Tear-down Protocol

The completion of pending data transfers is initiated by
using Waitproc primitive provided by ARMCI [15]. It has
similar semantics as MPI Waitall - allowing the reuse of
posted buffers after completion. The flush message ensures that
all the data transfers have been completed in the target memory
(through the data server and RDMA). Fence primitive provided
by ARMCI is used to achieve this purpose. Figure 4 shows the
ACTS tear-down protocol in detail. The line corresponding to

Waitproc and flush are dotted, since they may be a no-op,
if they have been explicitly executed by application/global
arrays layer (using ARMCI Waitproc and ARMCI Fence,
respectively). The request for tear-down is initiated using the
UD based transport designed for ARMCI-ODCM [9]. The
reliability is handled in a similar way, as presented in ARMCI-
ODCM.

The process initiated the tear-down immediately after send-
ing the tear-down request to the data server. Since tear-down
takes in order of hundreds of micro-seconds, while the tear-
down request message takes a couple of seconds, significant
overlap is achieved in the tear-down protocol.

Other approaches for tear-down protocol include initiating
local tear-down by a process, as soon as max conn threshold
is needed. This approach would require more connections
to be teared-down and created again, since following syn-
chronization primitives (such as fence used frequently by
applications) would re-create the connections, incurring sig-
nificant overhead. Hence, we do not consider this approach
for implementation.

C. Discussion
Impact of eXtended Reliable Connection (XRC): Koop

et al., have presented MPI designs using advanced transport
semantics such as XRC over InfiniBand [3], [6]. The pro-
posed approaches allow a process to share connections to
target processes co-located on a destination node. The overall
connection memory footprint scales with number of nodes,
rather than the number of cores.

Unlike MPI, ARMCI connection structure is asymmetric,
as presented in the section III. A process creates a connection
only with the data server on a target node. The processes may
achieve any benefit by using XRC. However, the data server
may use XRC for the processes on a remote node. The current
ACTS design does not handle XRC based transport semantics,;
it may be extended using the following approach. In the new
protocol, when a data server receives the tear-down request, it
checks the number of established connections with co-located
processes on the remote node. The data server decrements
the reference count, and destroys the connection, when the
reference count is zero. We propose to implement this design
as a part of our future work.

Limitation: Initiation of Connection Tear-down: The
current ACTS design allows processes to request connection
tear-down. A data server may not initiate a request, since a
process may send a message to the data server, while the
connection request has been initiated. We propose to handle
this as a part of our future work.

V. PERFORMANCE EVALUATION OF ACTS

In this section, we present a performance evaluation of
NWChem [11] using ACTS, comparing its performance
to ARMCI-ODCM [9] - the default implementation of
ARMCI [15]. We also define max conn - a threshold to
define the maximum number of connections a process is
allowed to create. The evaluation is performed with multiple

victim selection methods (LRU and LRU-M). We begin with
a description of Experimental Testbed.

A. Experimental Testbed

Chinook [16] is a 160 TFlops system that consists of 2310
HP DL185 nodes with dual socket, 64-bit, Quad-core AMD
2.2 GHz Barcelona Processors. Each node has 32 Gbytes of
memory and 365 Gbytes of local disk space. Communica-
tion between the nodes is performed using InfiniBand with
Voltaire [17] Switches and Mellanox [18] Adapters.

B. Performance Evaluation with NWChem

NWChem is a high performance computational chemistry
software package [11], designed and developed at Environ-
mental and Molecular Science Laboratory at Pacific Northwest
National Lab. The package implements a variety of lower to
higher order methods for computational chemistry from den-
sity functional theory to computationally expensive methods
like coupled clustered computation. It has been scaled on high-
end systems achieving 1.3 Pflops on 220K cores on Cray
Jaguar at Oak Ridge National Lab [19].

In previous work, it has been established that ARMCI-
ODCM does not exhibit any overhead in comparison to the
completely connected model [9]. Hence, ARMCI-ODCM is
used as the reference point for performance comparison with
ACTS. The horizontal axis on each of the performance graphs
shows the connection management method. For ACTS, each
of the bar is a 2-tuple: (max conn, (LRU/LRU-M)). The
max connections are varied from 4 - 128 and number of
processes are varied from 2048 - 6144. Due to large memory
requirements of NWChem [11], four processes per node are
used.

Figure 5 shows the performance of ARMCI-ODCM and
ACTS with multiple parameters using NWChem and pentane
input deck on 2048 processes. The ARMCI-ODCM imple-
mentation takes 131s. The max conn parameter is varied from
128-4. The overall execution time varies from 128s-142s with
the variation. Using 128 as max conn, the overall tear-down
time is .11 seconds for LRU, while it is .09 seconds for LRU-
M. Similarly for max conn value as 32, the overall tear-down
overhead is .704 s and .621 seconds for LRU and LRU-
M, respectively. The reduction in max conn increases the
overall overhead of tear-down significantly, due to increase
in the number of connections being teared-down. However,
the overall degradation varies from 2%-7% (calculated by
subtracting the time of ACTS implementation from ARMCI-
ODCM). ACTS provides significant reduction in connection
memory utilization. In our experimental evaluation, we have
observed that all connections are created during the execution
of this input deck (results not shown due to lack of space).
Hence, with max conn as 128, a 4-fold reduction in connection
memory is achieved with 2% degradation in performance.
Similarly for max conn as 32 and 4, a 16-fold and 128-
fold improvement in connection memory is observed with
a degradation of 5% and 7% in performance. While the
irregular nature of execution makes it difficult to model the

communication pattern, these results provide guidelines for
selecting a reasonable value of max conn without incurring
significant loss in performance.

Figure 6 shows the performance evaluation for 4096 pro-
cesses. The execution time for ARMCI-ODCM is 83s. The
overall execution time for various ACTS configuration varies
from 82.4 to 88 seconds. The maximum number of created
connections vary from 93 to 121. Hence, for 128 as max conn,
we do not observe any connection tear-downs. For 32, the
difference between LRU and LRU-M is .55 s and .49s respec-
tively. For 4, the difference between LRU and LRU-M is 1.61s
and 1.44s, respectively. As observed for 2048 processes, LRU-
M outperforms LRU. The overall connection memory benefits
achieved vary from 3- 4 fold, with a performance degradation
of up to 7%. Hence, significant connection memory benefits
are still achievable with marginal performance degradation.

Figure 7 shows the performance evaluation with 6144 pro-
cesses. ARMCI-ODCM presents the overall execution time to
78s. Varying the max conn parameter from 128-4, the overall
execution time varies from 79-84s. The observed performance
degradation is up to 7%. The maximum number of created
connections vary from 91-117. Hence, 128 max conn does not
observe any tear-down of connections. The overall connection
memory benefits achieved are similar to 4096 processes, as
observed in the previous chart. The break time is .55s and .49s
for LRU, LRU-M with 32 as max conn, respectively. With 4
as max conn, these values are 1.61 and 1.44s, respectively.

Figure 8 shows the performance evaluation the siosi7 input
deck for 4096 processes. The execution time for ARMCI-
ODCM is 240s. For ACTS based approaches, the overall
execution time varies from 243-246s. While no connection
tear-down are observed for 128, the overall connection tear-
down overhead is negligible in comparison to the overall
execution time.

From the performance evaluation presented above, there are
multiple important conclusions:

• ACTS is able to reduce the overall memory consumption
significantly, with a negligible/insignificant performance
penalty. For extreme values of max conn, the overall
overhead is up to 7%. The results presented in this section
may be used by an application scientist as a guideline for
the overall connection memory given to ARMCI.

• LRU-M victim selection method results in lesser or
equivalent overhead in comparison to the legacy LRU
method. Providing higher priority to processes, which
have been teared down more often than the others, the
LRU-M method is able to capture the partial regularity,
which exists in the application.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a dynamic time-variant
connection management approach that establishes connections
on-demand like previous approaches, but further intelligently
tears down some of the unused connections as well. While
connection tear-down itself is relevant for any programming
model, different models have different complexities. In this

Break time
Establishment time

Total time

 40

 80

 100

 120

 140

4,LRU−M4,LRU32,LRU−M32,LRU128,LRU−M128,LRUARMCI−ODCM

E
xe

cu
tio

n
 T

im
e

(s
)

Connection Management Method

 0

 20

 60

Fig. 5. NWChem-2048 Processes, Pentane Input Deck

Break time
Establishment time

Total time

 40

 80

 100

4,LRU−M4,LRU32,LRU−M32,LRU128,LRU−M128,LRUARMCI−ODCM

E
xe

cu
tio

n
 T

im
e

(s
)

Connection Management Method

 0

 20

 60

Fig. 6. NWChem-4096 Processes, Pentane Input Deck

Break time
Establishment time

Total time

 40

 80

 100

4,LRU−M4,LRU32,LRU−M32,LRU128,LRU−M128,LRUARMCI−ODCM

E
xe

cu
tio

n
 T

im
e

(s
)

Connection Management Method

 0

 20

 60

Fig. 7. NWChem-6144 Processes, Pentane Input Deck

Break time
Establishment time

Total time

 100

 200

 250

 300

4,LRU−M4,LRU32,LRU−M32,LRU128,LRU−M128,LRUARMCI−ODCM

E
xe

cu
tio

n
 T

im
e

(s
)

Connection Management Method

 0

 50

 150

Fig. 8. NWChem-4096 Processes, siosi7 Input Deck

paper, we have studied the Global Arrays (GA) PGAS model
for two reasons: (1) the simple one-sided communication
primitives provided by GA and other PGAS models ensure that
connection requests are always initiated by the origin process
without explicit synchronization with the target process—
this makes connection tear-down simpler to handle; and (2)
GA supports applications in several domains such as com-
putational chemistry (NWChem) and computational biology
(ScalaBLAST) that demonstrate this behavior making it an
obvious first target for the proposed enhancements. We have
evaluated our proposed approach using NWChem compu-
tational chemistry application using up to 6144 processes,
and concluded that our approach can significantly reduce the
memory requirements of the communication library while
maintaining its performance.

We continue to address the limitations of ACTS - handling
multi-sided initiation tear-down requests and using eXtended
Reliable Connection. We plan to address these limitations
in future work and evaluate the extended approaches with
NWChem and upcoming applications such as STOMP and
others.

REFERENCES

[1] InfiniBand Trade Association, “InfiniBand Architecture Specification,
Release 1.2,” October 2004.

[2] “TOP 500 Supercomputer Sites,” http://www.top500.org.

[3] M. J. Koop, S. Sur, Q. Gao, and D. K. Panda, “High Performance MPI
Design Using Unreliable Datagram for Ultra-Scale InfiniBand Clusters,”
in International Conference on Supercomputing, 2007, pp. 180–189.

[4] W. Yu, Q. Gao, and D. K. Panda, “Adaptive Connection Management for
Scalable MPI over InfiniBand,” in International Parallel and Distributed
Processing Symposium, 2006.

[5] M. J. Koop, S. Sur, and D. K. Panda, “Zero-copy Protocol for MPI
Using Infiniband Unreliable Datagram,” in International Conference on
Cluster Computing, 2007, pp. 179–186.

[6] M. J. Koop, T. Jones, and D. K. Panda, “MVAPICH-Aptus: Scalable
High-performance Multi-Transport MPI over InfiniBand,” in Interna-
tional Parallel and Distributed Processing Symposium, 2008, pp. 1–12.

[7] M. J. Koop, J. K. Sridhar, and D. K. Panda, “Scalable MPI design
over InfiniBand using eXtended Reliable Connection,” in International
Conference on Cluster Computing, 2008, pp. 203–212.

[8] J. Nieplocha, R. J. Harrison, and R. J. Littlefield, “Global Arrays: A
Portable “Shared-Memory” Programming Model for Distributed Mem-
ory Computers,” in SuperComputing, 1994, pp. 340–349.

[9] A. Vishnu and M. Krishnan, “Efficient On-demand Connection Manage-
ment Protocols with PGAS Models over InfiniBand,” in International
Conference on Cluster, Cloud and Grid Computing, 2010.

[10] J. Dinan, D. B. Larkins, P. Sadayappan, S. Krishnamoorthy, and
J. Nieplocha, “Scalable Work Stealing,” in Proceedings of the Con-
ference on High Performance Computing Networking, Storage and
Analysis. New York, NY, USA: ACM, 2009, pp. 1–11.

[11] R. A. Kendall, E. Aprà, D. E. Bernholdt, E. J. Bylaska, M. Dupuis,
G. I. Fann, R. J. Harrison, J. Ju, J. A. Nichols, J. Nieplocha, T. P.
Straatsma, T. L. Windus, and A. T. Wong, “High Performance Compu-
tational Chemistry: An Overview of NWChem, A Distributed Parallel
Application,” Computer Physics Communications, vol. 128, no. 1-2, pp.
260–283, June 2000.

[12] J. Wu, J. Liu, P. Wyckoff, and D. K. Panda, “Impact of On-Demand
Connection Management in MPI over VIA,” in International Conference
on Cluster Computing, 2002, pp. 152–159.

[13] A. Vishnu, A. Mamidala, S. Narravula, and D. K. Panda, “Automatic
Path Migration over InfiniBand: Early Experiences,” in Proceedings
of Third International Workshop on System Management Techniques,
Processes, and Services, held in conjunction with IPDPS’07, March
2007.

[14] A. Aho, P. Denning, and J. Ullman, “Principles of Optimal Page
Replacement,” Journal of the ACM, vol. 1, pp. 80–93, 1971.

[15] J. Nieplocha and B. Carpenter, “ARMCI: A Portable Remote Memory
Copy Library for Distributed Array Libraries and Compiler Run-Time
Systems,” in Lecture Notes in Computer Science. Springer-Verlag, 1999,
pp. 533–546.

[16] “Chinook SuperComputer, Environmental Molecular Science Lab,
PNNL,” http://emsl.pnl.gov.

[17] “Voltaire Technologies,” http://www.voltaire.com/.
[18] “Mellanox Technologies,” http://www.mellanox.com/.
[19] E. Aprà, A. P. Rendell, R. J. Harrison, V. Tipparaju, W. A. deJong, and

S. S. Xantheas, “Liquid Water: Obtaining The Right Answer For The
Right Reasons,” in Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, 2009, pp. 1–7.

jbullock

jbullock

jbullock
The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

jbullock

jbullock

jbullock

jbullock

jbullock
This work was supported by the U. S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357.

jbullock

jbullock

jbullock

jbullock

jbullock

